

rogram or Global Rice Science

Drying Basics and Principles

M.Gummert Postharvest Unit, CESD **IRRI** Los Baños, Philippines

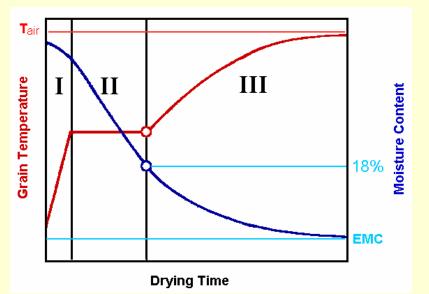
postharvest@irri.org

Content

- Drying process
- Moisture gradient
- Tempering
- Heated air drying and low temperature drying

Drying process

| Preheating period


- drying rate is slowly increasing
- only a very slight change in MC

II Constant-rate period

- drying rate is constant in time
- removal of surface water
- grain temperature is constant
- energy used to evaporate water

III Falling-rate period

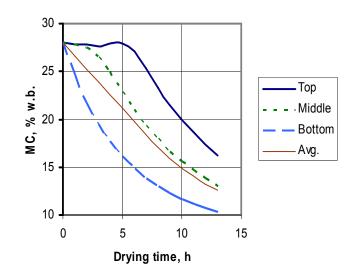
- drying rate declines over time
- transfer of internal moisture to the surface
- drying rate declines
- grain heats up (danger)
- for paddy grain starts at 18%

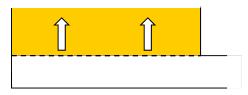
-> Temperatures for drying paddy

- Seeds
 - Maximum of 43 °C
- For milling
 - During constant-rate period: > 100°C
 - During falling-rate period: < 55 °C (depends on drying system)

Drying rate

- Stated in percent moisture removed per hour
- Affected by:
 - Temperature and relative humidity of the drying air
 - Seeds: max. 43°C
 - Fist stage drying: max. 120°C
 - Second stage drying: max. 55°C
 - Air velocity
 - Too low -> air is saturated before leaving the dryer
 - Too high -> faster drying but wast of energy
 - Low-temperature drying: 0.1 m/s
 - Heated air drying: 0.15-0.25 m/s
 - Fluidized bed drying: 2.3 m/s

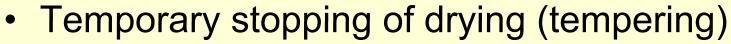

Uniform drying


Moisture gradient

- grain at the air inlet dries faster
- moisture gradient
- unloading dry grains are mixed with wet grains
- Re-wetting -> cracks in dry grains

For even drying

- sun drying: stir every 30 minutes
- mix grain in fixed bed dryers
- use re-circulating batch dryers
- use low temperature for more even drying



Science Partnership

- moisture will equalize inside the grains
- moisture between grains will equalize (reduces the moisture gradient)
- Re-start drying
 - drying rate will be higher
 - reduced energy requirement
- Application
 - re-circulating batch dryers, grain goes through cycles of drying followed by tempering
 - tempering bins in continuous flow dryer plants

Mechanical drying Methods

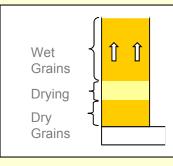
Research Program Rice Global Science Partner

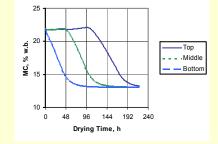
Drying

Zone

IRRI

Research Program on Rice Global Rice Science Partnership Heated-air dryving




Drying air temp.:	43°C
Air velocity:	0.15-0.25 m/s
Airflow rate per t gra	in: >0.7 m ³ /s
Airflow rate per t gra Power requirement:	1.5-2.5kW/t
grain	
Layer depth:	< 40 cm
Drying time:	6-12 h
Drying time: Initial MC:	up to 30%+

Advantages:

Simple management Fast drying Affordable Low level of integration <u>Disadvantages:</u> 3-4% moisture gradient in final product, requires mixing or reduced layer depth Reduction in milling yield Danger of killing seeds

Low-Temperature Drying

Drying air temperature: Air velocity: Airflow rate per t grain: Power requirement: Layer depth: Drying time: Initial MC: Δ T = 0-6 °K 0.1 m/s >0.05-0.4 m³/s 0.05-0.15 kW/t grain < 2 m days to weeks 18% (28%)

Advantages:

Very energy efficient Bins can be filled at harvest rate Maintains grain quality optimally Drying in storage structures <u>Disadvantages:</u> Increased risk with poor power supplies Requires bulk handling system (high level of integration in postharvest system) Long drying time

nice

Sun drying

Harvesting

Threshing

Transport

Drying

Storage

Milling

Packaging

Marketing

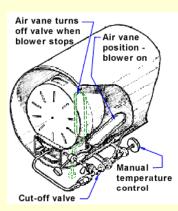
Rice Science for a Better World

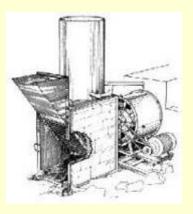
Advantages

- Free energy
- Low capital investment

Disadvantages

- Weather risk
- Temperature control difficult
- High qualitative and quantitative losses
- High labor requirement




W REFEL

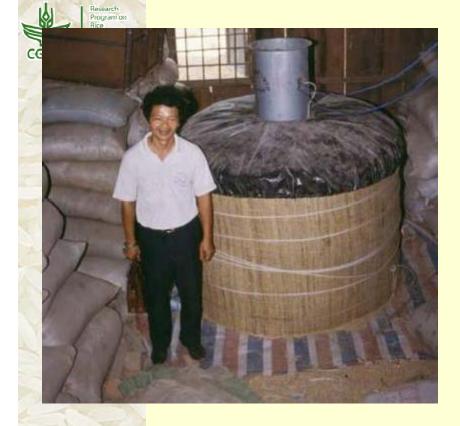
IRRI Flat-bed dryer

1	Research Program on				
S A	Capacity	1 – 2 metric tons/batch			
9	Price	US\$ 1000-2000			
1	Drying time	6-8h			
Viel II	Grain Quality	Medium quality, uneven drying of bottom and top layer			
N STALL	Heater	Drying air temperature: 43°C A.) Kerosene burner, 2.0 l kerosene/h B.) Rice hull furnace, 3-4 kg rice hull/h			
1800 cfm at 20mm H2CA.) Electric motor, 2.5 kgB.) Gasoline engine, 0.DimensionsWeightL: 3.2m; W: 2.5m; H: 1mbin: 220 kg; furnace: 29		Axial flow fan, 2200 rpm 1800 cfm at 20mm H2O A.) Electric motor, 2.5 kW B.) Gasoline engine, 0.75l gasoline/h			
		L: 3.2m; W: 2.5m; H: 1m; bin: 220 kg; furnace: 290kg			
		Simple design, can be locally made, can handle very wet crop			
A A	Disadvantage	Moisture gradient, mixing necessary, dust when unloading, kerosene smell			
I.	Science for a Better				

Kerosene burner

Rice hull furnace

Program on Rice Global Rice


Vietnamese 4t Flat Bed Dryer in Battambang, Cambodia

Vietnamese type Flat Bed Dryer in Flat Bed Dryer in Myanmar 4-6t capacity Drying rate: 1%/h Cost: US\$ 3,000 Rice husk furnace

Vietnamese Low-cost dryer

Capacity	1 t/batch			
Price	US\$ 150-200			
Drying time	2-4 days			
Grain Quality	Good, low temperature drying principle			
Heater	Drying air temperature: 6°C above ambient, if weather is bad			
	A.) Coal stove, 0.9-1 kg/h B.) Electric heater, 1 kW			
Fan	Axial flow fan, 1750 rpm blowers from automotive coolers Electric motor, 0.5 kW			
Advantage	Very cheap, simple design, can be locally made, can utilize traditional storage structures, highly mobile			
Disadvanta ge	Small moisture gradient, long drying time			

Low-cost seed dryer

Partnership				
Capacity	100-250 kg			
Price	US\$ 150-200			
Drying time	6-9h (initial MC of 22%)			
Grain Quality	Good seed quality			
Heater	Drying air temperature: 43°C Rice hull stove, 1-1.5 kg rice hull/h			
Fan	Centrifugal fan, 3200 rpm 0.11 m³/s Electric motor, 220W			
Advantage	Simple design, can be locally made, affordable, mobile			
Disadvantage	Moisture gradient			

IRRI Re-circulating batch dryer

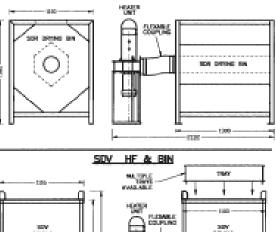
Capacity	10 metric tons/batch		
Price	US\$ 10,000		
Drying time	6-8 h, 55 min circulation period		
Grain Quality	Best quality, continuous mixing, tempering – drying cycles		
Heater	Drying air temperature: adjustable, Kerosene burner, 15.4 l/h		
Fan	2 axial flow fans, 1730 rpm 1800 cfm at 20mm H2O A.) Electric motor, 2.5 kW B.) Gasoline engine, 0.75l gasoline/h		
Dimensions	L: 3.5 m; W: 2.5 m; H: 8.3 m; 2,110kg		
Electricity cons.	7.2 kW for blower, conveyors, electronic control		
Advantage	Automatic operation, excellent quality, Automatic safety features		
Disadvantage	Problems with very wet crop (>30%)		

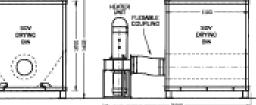
Research Program on Rice

Axial-flow blower

Kerosene burner

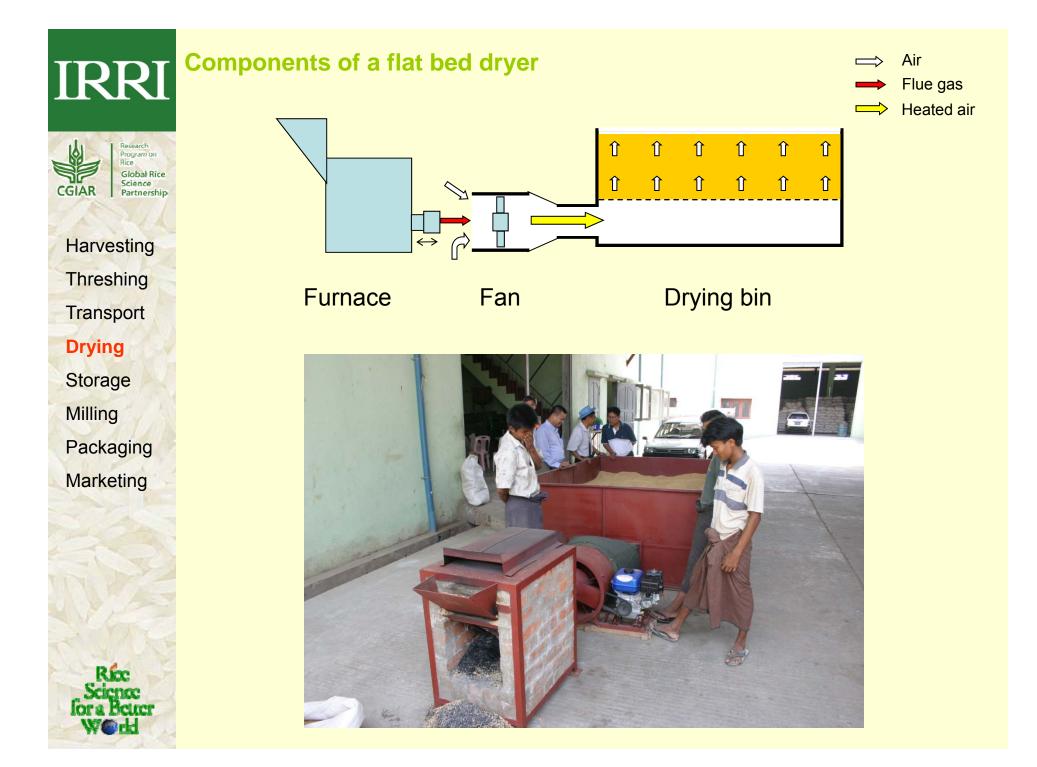
Control panel





Research Program on Global Rice

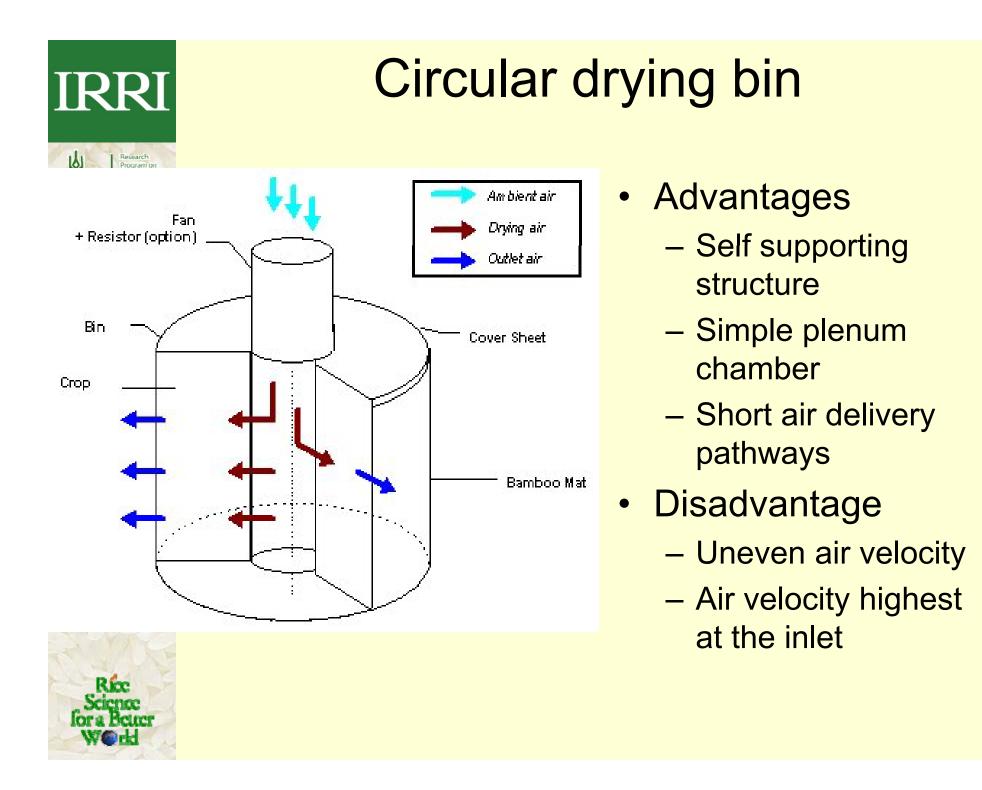
Agridry seed dryer


Partnership				
Capacity	0.6 t/batch (1m ³)			
Price	US\$ 1,350			
Drying time	3.5 hours from 21.5% to 12.5% Drying rate: 2.3%/h			
Grain Quality	See quality analysis			
Heater	LPG gas, 20 MJ/h			
Fan	Centrifugal fan Electric motor, 1.5 kW			
Advantage	Mobile, convenient operation, automatic temperature control, high drying rate			
Disadvantage	Uneven grain bed thickness Bin needs to be totally filled			
	Inconvenient unloading			

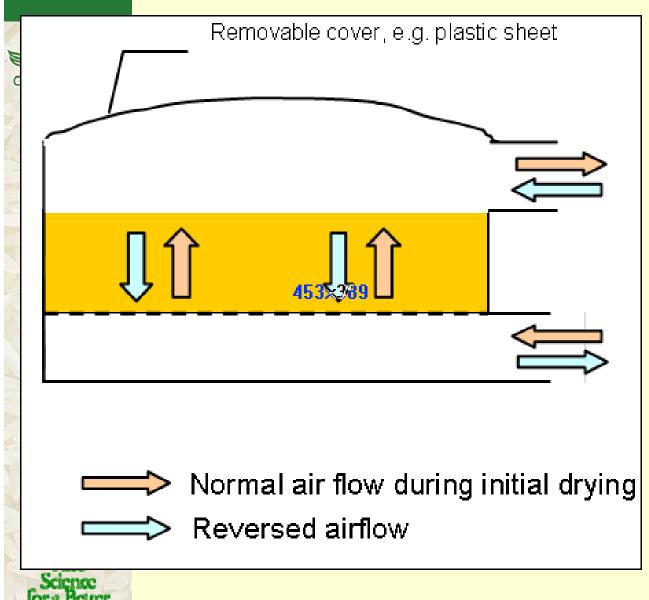
IRRI Components of a dryer and their function

Research Program on Rice Global Rice Science Partnership

Main components


- Drying bin holds the grain
- Air distribution system provide drying air, remove water
- Fan create pressure and air flow
- Air heater reduce relative humidity of air
- Optional
 - Conveyors loading and unloading
- Accessories
 - **Moisture meter** monitor drying process
 - Dust separator clean exhaust air

IRRI Drying bin and plenum chamber Program on Rice **Global Rice** Science Partnership Air Circular bin dryer Flat bed dryer Inclined bed dryer Easy unloading Compact and cheap Cheap and simple \odot \odot \odot

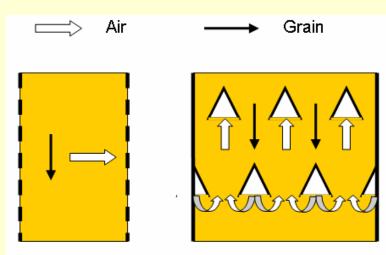

A Labor intensive

- \odot More expensive

- Uneven airflow inside R and outside

Reversible air flow dryer

- Reversal of air flow
- Reduced moisture gradient
- No mixing needed
- Increased capacity



Air distribution system Re-circulating batch dryers

Cross flow

- Grain moves downwards, air across
- Less hindrance of grain flow, works better with wet paddy with high amount of straw and chaff
- Mixed flow
 - Air flows from inlet to outlet ducts
 - Ducts are shaped so that they mix the grain
 - Better mixing leads to better quality

Cross Flow

Mixed Flow

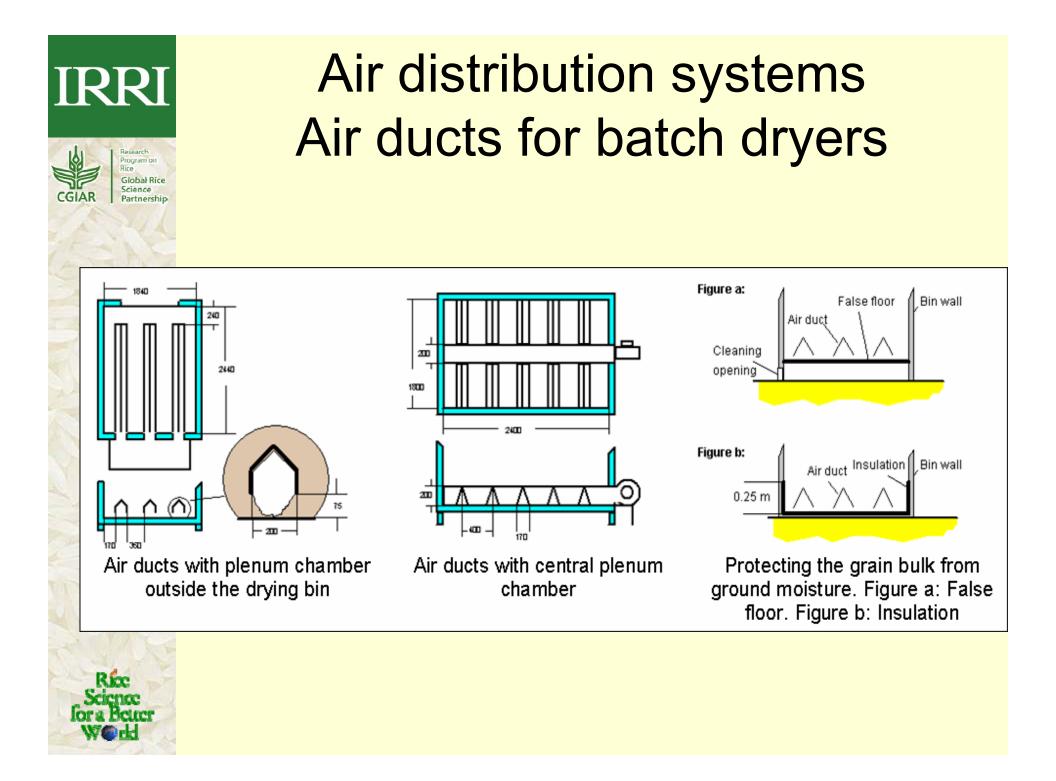
Fans

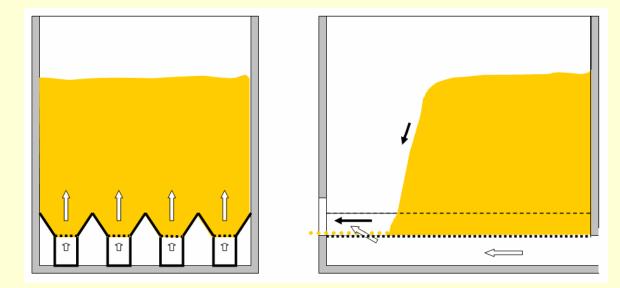
A Recearch

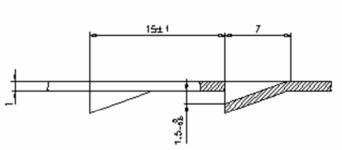
Fan type	Axial flow	Centrifugal, forwards curved	Centrifugal, backwards curved	
		dame	Jame Contraction	
Cost	Cheap	more expensive	most expensive	
Characteristics ¹	non-overloading	overloading	Non-overloading	
Pressure creation	10-15 cm water	0-15 cm water	0-30 cm water	
Unstable region of operation	At high pressure	None	None	
Construction	Sturdy	Light	Sturdy	
Noise level	High	Low	Medium	
Typical use	Aeration, recirculation batch dryer, batch dryer		In-store dryers	

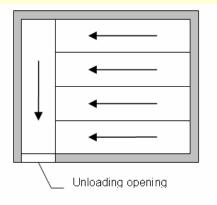
Air distribution system

IRRI


Suction system Pressure system rogram on Type of Science Partnership Fixed bed batch Dryers with moving dryers grain, re-circulating batch and continuous flow Air Fixed batch can be Moving mechanical parts tightness made airtight easily, make sealing difficult large outlet of bin Heater Before fan Before dryer inlet Fan High temperature Lower temperature resistance needed, resistance sometimes exposed to flames Stays mainly in fixed Dust Sucked out with the bed, set free when drying air unloading

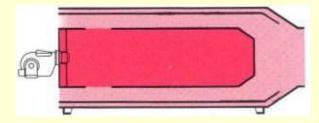

Air distribution system Options for batch dryers


Cherry Cherry	System	Air ducts	Perforated false floor	Air-sweep floor	
	Cost	Low	Medium	High (grill shaped metal plus fan)	
1	Air distribution	r distribution Uneven		Optimal	
all the marked	Requirements	Sealed floor Additional plenum chamber needed	Stable support structure needs withstand walking on it	Support structure Strong fan for conveying	
	Constraints	Manual unloading Uneven drying at high MC	Manual unloading	Dust creation	



Air distribution systems Air sweep floors

Research Program on Rice Science




Global Rice Partnership

Heating systems

Work

Wodd

Heating Systems

	Kerosene / Diesel burner	Small Rice Hull Furnace	Automated Rice Hull Furnace	LPG burner	Electricity	Solar energy
Application	High	Medium	Low	Few	None	None
Capital cost	Low	Medium	High	Medium	Low	High
Operating cost	Medium	Low	Low	Medium-High	High	None
Advantages	 Easy fuel handlingAuto matic operation High energy content 	 Cheap fuel CO2 neutral 	 Cheap fuel CO2 neutral 	 Easy handling of fuel Automatic operation Clean flame 	 Convenient Easy to control Clean 	CO2 neutral
Constraints	• Smell	 Labor intensive Material difficult to convey Bulky fuel 	 High capital cost Wear of compone nts. Bulky fuel 	 Availability Cost of fuel 	 Expensive Limited power load Highest energy form 	• Low heat generation

Program on Rice Global Rice Science Partnership

Accessories: Pre-cleaner

- Fines in rice create dust during the loading and drying process and reduce airflow through the rice grain.
- Pre-cleaners usually consist of
 - scalper that lets through the grain but retains straw
 - a smaller second screen that removes small stones and other impurities
 - air aspirator for sucking out dust and light empty grains

Program on Rice Global Rice Science

Partnership

Accessories: Elevators and Conveyors

- For horizontal and vertical transport of grains:
 - Loading
 - Circulation
 - Discharge
- Need to be matched to the capacity of the dryer.
 - A properly designed bucket elevator for a recirculating batch dryer can easily reach capacities of 10t/h.

Accessories: Moisture meter

- Monitoring grain moisture to avoid
 - over drying
 - incomplete drying
- Over drying
 - Unnecessary weight loss
 - Reduced milling yields
 - Incomplete drying causes qualitative and quantitative losses from
 - fungal growth
 - insect activity
 - respiration

Accessories: Dust collection system

- Grain handling will create dust, making working around a grain drying hazardous.
- Need for dust collection systems
 - Cyclone
 - Need to be properly sized depending on the dryer specifications.

Program on Rice Global Rice Science Partnership

Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution – Non Commercial 3.0 License

http://creativecommons.org/licen ses/by-nc/3.0/

Copyright 2013

The International Rice Research institute

You assume all responsibility for use and potential liability associated with any use of the course material. The course material may contain copyrighted content, and was developed for educational purposes only. Copyright holders of content included in this material should contact IRRI with any questions, corrections, or clarifications regarding the use of content. IRRI does not license the use of third party content included in this course material unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law.