What technology where?

Crop and Environmental Sciences Division International Rice Research Institute Los Baños, Philippines

Boundary conditions and settings

- Nature of water scarcity ("imposed", natural, physical, economical)
- Socio-economic setting (price of rice, price of water, water market, water rights, labor availability, gender issues)
- Technical infrastructure (water control, irrigation system)
- Organizational infrastructure (water user groups, irrigation association)
- Policy (water pricing)

Response options to level of water scarcity

Soil Condition

Cross-over point flooded - aerobic

Scale considerations

Scale level	User	Objective	
Field	Farmer	Yield, income	
Small landscape	Competing farmers Governor, mayor,	Competing income Votes, regional production	
Irrigation system	Competing farmers Managers Hydropower, industry, city Recreation	Competing income Equity, production, \$\$ \$\$ \$	
Region, province, catchment	Competing farmers Governor, mayors, Hydropower, industry, city Recreation Nature	Competing income Votes, production, \$\$ \$\$, \$\$, \$\$ \$\$ Various services	
Country	All the above, competing	All the above, competing	

Scale considerations

Loss from field is not always loss from system Increasing options for water reuse with increasing scale

Integrated approach

Zanghe Irrigation System. 160,000 ha mainly rice

Other users: Hydropower, city, industry

Responses

- Double rice => single rice (same total yield, less water
- Active promotion AWD
- Farmer organization in water user groups
- Volumetric water pricing
- System modernization (water control, canal lining, water measurement)
- Thousands of ponds for water reuse

Water re-use through reservoirs and on-farm ponds

More rice using less water!

When water is scarcer than land, maybe maximize water productivity instead of land productivity (= yield)

Suppose:

- Irrigation command area of 10,000 ha
- Reservoir with 69 10⁶ m³ capacity
- Water shortage: only 56 10⁶ m³ available

Rice	Yield (t ha ⁻¹)	Water (mm)	WP _{IR}
Flooded	7.4	0.69	1.06
AWD	6.7	0.37	1.81

Two "response options"

Conventional (less area)	Area (ha)	Water used (10 ⁶ m ³)	Production (10 ³ t)
Flooded rice	8,000	56	59.2
Fallow	2,000	-	-
AWD	-	-	-
Total	10,000	56	59.2

Alternative	Area (ha)	Water used (10 ⁶ m ³)	Production (10 ³ t)
Flooded rice	5,680	40	42.0
Fallow	-	-	-
AWD	4,326	16	29.0
Total	10,000	56	71.0

Maximized water productivity

- Higher total production
- Increased equity among farmers
- No land abandonment