Field instrumentation

Crop and Environmental Sciences Division International Rice Research Institute Los Baños, Philippines

Field water balance lowland rice

Two types of instruments

Instruments to measure water inflows and outflows

Instruments to characterize field water status and groundwater ("hidden water source") Two simple tools to characterize water environment and aid in field water management

• Field water tube

Groundwater tube

Field water tube

Field water tube - installation

Push tube by hand vertically

Appearance of installed PW tube

Drive cylinder using mallet

Remove soil inside the tube

Check clearance from soil surface

Check and level the Top of the tube

Field water tube – measurement

Water depth = H - D

D = depth of field water table

H = height from soil surface to the top of the tube

A practical indicator for water in field

Field water depths

Controlled Irrigation

Water depth [mm]

Made of 5-cm diameter PVC pipe, 175-200 cm long, with perforations (0.5 cm diameter) in the bottom 50 cm.

- Installed into a bund using an auger (soil dril) of the same diameter to the required depth
- Should stick out about 50 cm above bund surface
- Use stick to measure water depth

Groundwater tube

Groundwater measurements

Tuanlin, China, 2002

$\begin{bmatrix} 20 \\ 0 \\ 168 \\ -20 \\ -40 \\ -60 \\ -80 \\ -100 \end{bmatrix}$ $\begin{bmatrix} \text{Groundwater depth (cm)} \\ 193 \\ 19$

Changle, China, 2002

Dolores, Philipines, 2002

Soil water tension meter

Soil water tension in an aerobic soil

Instruments to measure water flows

Rain + irrigation = evaporation + transpiration + percolation + seepage + overbund flow + d(storage)

Specialized equipment:

Inflows: rain gauge, flow meters

 Outflows: evaporation pan, percolation ring, seepage (?), surface water in channels

Weather station to calculate evaporation and transpiration

Rainfall rain gauge

- Raingauge
- Collector area
 150 to 200 cm²
- > 30 cm to 1 m above the ground

Irrigation Flow meter in pressure pipes

Irrigation Box weir for surface water

Irrigation/drainage Simple weir for surface water

Irrigation/drainage Flume for surface water

Evaporation pan

- Keep away from other instruments (2x ht)
- Level the pan
- Install the stilling well and the fixed point
- Add water until the water reaches the tip of the fixed point and can be seen as a small dot

Evaporation rings Soil evaporation

Percolation ring

20 cm in diameter cylinder - open on both ends Covered – to avoid evaporation and rainfall

Percolation meter - installation

Push cylinder by hand vertically

Drive cylinder using mallet

Check clearance from soil surface

Check and level percolation tube

Percolation meter - measurement

Put a mark on the wall of the cylinder. Always measure at this point

After each reading, cover the cylinder to prevent other losses (rain, evaporation)

Large percolation ring in field

Rain + irrigation = evaporation + transpiration + percolation + <u>seepage</u> + <u>overbund flow</u> + d(storage)

As surface flow in drain

As "rest term" of balance

Weather station (o.a., calculate ET)

