Rice Science for a Better World

What is the Role of Phosphorus (P) in Plants?

Phosphorous is an essential plant nutrient important for root development, tillering, early flowering, and ripening. It is mobile within the plant, but not in the soil.

How to Manage P?

- **P deficiency symptoms.** Stunted dark green plants with erect leaves and reduced tillering; thin and spindly stems; delayed maturity (and no flowering at all with severe P deficiency); and high levels of unfilled grains
- Occurrence of P deficiency. P is often deficient in sandy soils with low organic matter content; calcareous/saline/alkaline soils; degraded lowland soils; volcanic ash soils or acid upland soils with high P fixation capacity; peat soils; and, acid sulfate soils high in active iron and aluminum.
- **How much P to apply?** At optimum plant nutrition, the rice crop (straw plus grain) takes up around 6.4 kg P O_5 (2.8 kg P) per ton of grain yield (4.4 kg P $_2O_5$ in grain and 2.0 kg P $_2O_5$ in straw). Recommendations for P are based on yield goal and soil P status (see Table on opposite page) as determined by grain yield in P-omission plots (see also Fact Sheet on Nutrient Omission Plot Technique for P and K).
- When to apply P fertilizers? Incorporate all fertilizer P before the last soil
 puddling before transplanting or topdress all P within 10-15 days after
 direct seeding.

What are the Sources of P?

P fertilizer sources and fertilizer P₂O₅ equivalents.

		Fertilizer P₂O₅ (kg ha⁻¹)					
P fertilizer	% P ₂ O ₅	15	20	30	40	60	
Amount of fertilizer required (kg ha ⁻¹							
Single super	16-18	88	117	176	234	352	
Double super/SP36	36	42	56	84	112	168	
Triple super	44-46	33	44	66	88	132	
Diammonium phosphate (DAP)*	44-46	33	44	66	88	**	

* Also contains 18% N. ** At high P_2O_5 rates, combine DAP with other P fertilizers to prevent over application of basal N. **Note:** 1 kg P_2O_5 = 0.44 kg P and 1 kg P =2.29 kg P_2O_5

Yield target in t ha ⁻¹ \rightarrow		4	5	6	7	8				
Soil P status	Yield in 0 P plot (t ha⁻¹)	Recommended fertilizer P_2O_5 in kg ha ⁻¹								
Low	3	20	40	60	•	•				
	4	15	25	40	60	•				
Medium	5	-	20	30	40	60				
	6	-	-	25	35	45				
High	7	-	-	-	30	40				
	8	-	-	-	-	35				

P deficient plants are stunted, and have erect leaves compared with normal plants.

Tillering is reduced in P deficient crops. Photos: Dobermann & Fairhurst (2000).

Leaf discoloration is common to P deficient plants.

Fertilizer P_2O_5 recommendations based on yield targets and P-limited yield in P-omission plots (zero P plots). \blacktriangleleft indicates possibly unrealistic yield goal.

For more information:

To learn about site-specific nutrient management, visit <u>http://www.knowledgebank.irri.org/ssnm</u>. To access a key to diagnose problems in the field, visit <u>http://www.knowledgebank.irri.org/ricedoctor</u>. For an overall view of crop management practices, visit <u>http://www.knowledgebank.irri.org/tropRice</u>.

Developed with input from V Balasubramanian, C. Witt, RJ Buresh, and M Bell.

mational Rice Research Institute

Produced by the International Rice Research Institute (IRRI) • © 2003, IRRI, All rights reserved • December 05, 2003.